skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dinh Nguyena, Di Kang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Titanium alloys typically do not contain hard inclusion phases typically observed in other metallic alloys. However, the characteristic scoring marks and more distinctive micro- and/or macro-chippings are ubiquitously observed on the flank faces of cutting tools in machining titanium alloys, which is the direct evidence of abrasive wear (hard phase(s) in the microstructure abrading and damaging the flank surface). Thus, an important question lies with the nature of the hard phases present in the titanium microstructure. In this work, we present a comprehensive study that examines the microstructural impact on flank wear attained by turning various Ti-6Al- 4V bars having distinct microstructures with uncoated carbide inserts. In particular, four samples with elongated, mill-annealed, solution treated & annealed and fully-lamellar microstructures were selected for our turning experiments. After turning each sample, the flank surface of each insert was observed with confocal laser scanning microscopy (CLSM) and analyzed to determine the flank wear behavior in relation to each sample' distinct microstructures. To characterize the microstructure, scanning electron microscopy (SEM) together with Orientation imaging microstructure (OIM) was used to identify and distinguish the phases present in each sample and the content and topography of each phase was correlated to the behavior of flank wear. The flank wear is also affected by the interface conditions such as temperature and pressure, which were estimated using finite element analysis (FEA) models. The temperature dependent abrasion models enable us to estimate the flank wear rate for each microstructure, and are compared with the experimentally measured wear data. 
    more » « less